ON STRONGLY INDEFINITE SYSTEMS INVOLVING FRACTIONAL ELLIPTIC OPERATORS
نویسندگان
چکیده
منابع مشابه
Existence Results for Strongly Indefinite Elliptic Systems
In this paper, we show the existence of solutions for the strongly indefinite elliptic system −∆u = λu+ f(x, v) in Ω, −∆v = λv + g(x, u) in Ω, u = v = 0, on ∂Ω, where Ω is a bounded domain in RN (N ≥ 3) with smooth boundary, λk0 < λ < λk0+1, where λk is the kth eigenvalue of −∆ in Ω with zero Dirichlet boundary condition. Both cases when f, g being superlinear and asymptotically linear at infin...
متن کاملOn certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS
In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...
متن کاملOn a superquadratic elliptic system with strongly indefinite structure
In this paper, we consider the elliptic system
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Far East Journal of Applied Mathematics
سال: 2017
ISSN: 0972-0960
DOI: 10.17654/am0970230085